Gelfand numbers and widths
نویسندگان
چکیده
In general, the Gelfand widths cn(T ) of a map T between Banach spaces X and Y are not equivalent to the Gelfand numbers cn(T ) of T . We show that cn(T ) = cn(T ) (n ∈ N) provided that X and Y are uniformly convex and uniformly smooth, and T has trivial kernel and dense range. c ⃝ 2012 Elsevier Inc. All rights reserved.
منابع مشابه
Gelfand numbers and metric entropy of convex hulls in Hilbert spaces
We establish optimal estimates of Gelfand numbers or Gelfand widths of absolutely convex hulls cov(K) of precompact subsets K ⊂ H of a Hilbert space H by the metric entropy of the set K where the covering numbers N(K, ") of K by "-balls of H satisfy the Lorentz condition ∫ ∞ 0 ( log2N(K, ") )r/s d" <∞ for some fixed 0 < r, s ≤ ∞ with the usual modifications in the cases r = ∞, 0 < s < ∞ and 0 <...
متن کاملWidths of embeddings in function spaces
We study the approximation, Gelfand and Kolmogorov numbers of embeddings in function spaces of Besov and Triebel-Lizorkin type. Our aim here is to provide sharp estimates in several cases left open in the literature and give a complete overview of the known results. We also add some historical remarks. AMS Classification: 41A45, 41A46, 46E35
متن کاملWidths of embeddings of 2-microlocal Besov spaces
We consider the asymptotic behaviour of the approximation, Gelfand and Kolmogorov numbers of compact embeddings between 2-microlocal Besov spaces with weights defined in terms of the distance to a d-set U ⊂ R. The sharp estimates are shown in most cases, where the quasi-Banach setting is included.
متن کاملThe Gelfand widths of ℓp-balls for 0<p≤1
We provide sharp lower and upper bounds for the Gelfand widths of lp-balls in the N -dimensional lNq -space for 0 < p ≤ 1 and p < q ≤ 2. Such estimates are highly relevant to the novel theory of compressive sensing, and our proofs rely on methods from this area.
متن کاملStability of low-rank matrix recovery and its connections to Banach space geometry
Abstract. There are well-known relationships between compressed sensing and the geometry of the finite-dimensional lp spaces. A result of Kashin and Temlyakov [20] can be described as a characterization of the stability of the recovery of sparse vectors via l1minimization in terms of the Gelfand widths of certain identity mappings between finitedimensional l1 and l2 spaces, whereas a more recen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 166 شماره
صفحات -
تاریخ انتشار 2013